NAVAL POSTGRADUATE SCHOOL @
Monterey, California

DTIC ‘jg S

s ELECTE
JAN 2 6 1994
A -

_..:‘:" THESIS

USEFULNESS OF COMPILE-TIME
RESTRUCTURING OF LGDF PROGRAMS
IN THROUGHPUT-CRITICAL APPLICATIONS

by
David M. Cross
September, 1993
Thesis Co-Advisor, BCE Dept Shridhar B. Shukla
Thesis Co-Advisor, CS Dept Amr Zaky

Approved for public release; distribution is unlimited.

94-0214
IWIIIIIMII!WHIWMMMIIS

94 1 25 043 |

UNCLANSIFIED

SECUNITY GLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
e UNCLASSIFIED

.q I fa W l . Io .I » k l- . ’

Wm
o Naval Postgraduate School
Engineering, Naval Postgraduate School EC v

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Cade)

Monterey, CA 93943-5121 Mcuterey, CA 93943-5000

8c. ADDRESS (City, State, and ZIP Code) 10.

11. TITLE Security Classification) .]
OF COMPILE-TIME RESTRUCTURING OF LARGE GRAIN DATA FLOW PROGRAMS IN THROUGHPUT-CRITICAL APPLICATIONS (U)

! Cross, David M.

TWE'%{EHEU! : 14, DATE OF REPORT (Year, Month, Day) |1
s mou’ . 993 gepmba?

The views expressed in this thesis are those of the authar and do not reflect the official policy or position
of the Department of Defense or the United States Government.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number]
1. COSATI CODES Revotving Cylinder (RC), Start-Afier-Finith (SAF), Start. After.Start (SAS),

FIELD GROUP _{ SUBGROUP { J erge Grain Data Flow (LGDF) Systems

19. ABSTRACT (reverse if necessary number)

s :ﬁ"’"’“”"mpcmmu"ﬂw% %ﬁmuwnmmmwmu
process periodically arriving data. The applications are represented by directed acyclic graphs in which a vertex represents an indivisible
node program execution and an arc represents data flow from its source node to sink node. The machine and graph parameters are assumed
to be such that the time to transfer one unit of data is comparable to the time 0 execute one operation at a processor. The machine model
consists of a set of processors connected to a set of memory modules by a cross-bar interconnection network. Execution of LGDF graphs on
such machines either requires a run-time mechanism to dispatch executable nodes on available processors or a compile-time static scheduling
of nodes to processors. The former spproach, although flexible and robust, suffers from contention-related overhead and the latter, although
capable of eliminating contention, is rigid and computationally intensive.

It is shown by simulation that throughput can be improved when compile-time graph restructuring is coupled with simple first-
come-first-serve dispatching. The restructuring is based on selectively adding control dependencies between graph nodes. This technique,
Wbmdvmqhdunﬂmuﬁownbhnmm&mvmmmmlmmmmmd

_§j reducing memory contention.

|
. 31 ABSTRACT SECURNTY CLASSIFICATION
) [UNCLASSIFIEDANLITED [] SAME ASRPT. [DTIC USERS UNCLASSTFIED
)
i . - T
DD POMM 1473, 04 MAR 83 APR ecition may be used uil exheusted ____ SECURITY CLASSIFICATION OF THIS PAGE

i

Approved for public release; distribution is unlimited.
Usefuiness of Compile-Time Restructuring of Large Grain Data Flow Programs
in Throughput-Critical Applications
by

David M. Cross
Captain, United States Army
B.S.E.E., Rensselaer Polytechnic Institute, 1986
MSBA., Boston University, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1993

Author: Dol Vi Crona

David M. Cross

Approved By: .~ :21,@4\/‘/\/1*/(};

Shridhar B. Shukla, .
Thesis Co-Advisor, ECE Dept

e

Amr Zaky '
Thesis Co-Advisor, CS Dept

Michael A. Morgan,
Department of Electrical and Computer Engineering

Abstract

In this thesis, Large Grain Data Flow (LGDF) representation of parallelism is
applied to throughput-critical applications that process periodically arriving data. The
applications are represented by directed acyclic graphs in which a vertex represents an
indivisible node program execution and an arc represents data flow from its source node to
sink node. The machine and graph parameters are assumed to be such that the time to
transfer one unit of data is comparable to the time to execute one operation at a processor.
The machine model consists of a set of processors connected to a set of memory modules
by a cross-bar interconnection network. Execution of LGDF graphs on such machines
either requires a run-time mechanism to dispatch executable nodes on available processors
or a compile-time static scheduling of nodes to processors. The former approach, although
flexible and robust, suffers from contention-related overhead and the latter, although
capable of eliminating contention, is rigid and computationally intensive.

It is shown by simulation that throughput can be improved when compile-time
graph restructuring is coupled with simple first-come-first-serve dispatching. The
restructuring is based on selectively adding control dependencies between graph nodes.
This technique, called the revolving cylinder analysis, is shown to be an effective
framework for achieving communication / computation overlap and reducing memory

contention. Accesion For

|

. NTIS CRA&I)

INSPECTED DTIC TAB o

DTIC QUALITY ' Unannounced 0
Justification

By
Distribution [

Availability Codes

Avail and/or
Dist Special

sss
i3 -

TABLE OF CONTENTS

I. INTRODUCTION TN 1
A. THESIS SCOPE AND CONTRIBUTION.........cccecevrserrrerurerserseasansacsesscassenses 2
B. THESIS ORGANIZATIONccccccerremrusssssnenesssasssssencsnsssnsasnessssassacssssasssssas 3
C. ADDITIONAL RESEARCH.........ccccecvuimsenrscrarrasacncssessssnssssssessassssessesasssases 3

II. THE LARGE GRAIN DATA FLOW MODELceiiniecnnisnssessssssesesanns 4
A. SOFTWAREMODELcccocoscrimminimssimncnssassssasssensasssssssnsenssssssassssarses 4

1. Terms veresasesaansnstsssnsnssesaes -
2 NOAES ...t scsasassassessssssessasansasseressssanessasnns 5
3 QUENLS.............otrsicnsrsnennsense s ess s csasssastnsssesssssssasessasessassasnas 6
4 System Input Nodes and System Input Queuesccccovvererennnen 8
5 System Output Nodes and System Output Queues..................c.c....... 9
6 SyNChronizZation ATCS.............ccosemurmersssassareasssssesssssssssssnssssassssasssnen 9
B. HARDWAREMODEL...........mrrniicnisincssnsesssssssasassssssssssassasssssnss 10
1 Arithmetic PYOCESSON.........cceveuerienncninnniannsssessncsssmsasesensasassanssnsssssnss 10
2. INput/Output ProCeSSONccueerirenicscnnusesesassasasenssonnssessassscsces 11
3. Schedhiler vetnsasesaantastssesasnasaseasesermatesnssessessanasas 11
4. Global Memory Module.........uonnerrircncninccnsonesssesinansssesssessasnens 11
5. Data Transfer NEtWOK...........cccoeeurmieiensirssnnencesenensnsessasssssnssssssssseses 11
C. OVERALL SYSTEM MODEL..........ccceuinccrinsesssonersssssererssssssssessssanssssnene 12
1. Node Perspective 12
2. Processor PETSPECHIVE...........cccceverererenmerrsenesannsarserenseressesssesssesssnesesne 16
iv

M. SCHEDULING TECHNIQUEScccccouvecnmmnencnissmsnmmssnscnssssssensasssessessansesssens 19
A, TEBRMBS.........eistessennnnasssssssnseisssmensnssssssssesssasssssssnssssrsnsssssasssssssssses 19
1 TREOUGBPUL......ecovereeeenenenesssseesessmseesesssesssseseeseesssssesenesesessssssessssssssssssss 19

2 Response TIme...........ouiieiiciinnnsicsiscanenssnsscssssnsassssssassssssssnssassess 19

B. COMMUNICATION / COMPUTATION OVERLAP .19
1. Perfect Communication / Computation Overlap...............ccoocecverernnc. 20

2 Good Communication / Computation Overlap ... w21

3 Poor Communication / Computation Overlapc.ccoceuecrcvccreacees 22

4 Realistic Communication / Computation Overlap................cccecereneecne 22

5 Revised Finite State Machine Ceteseuseassssassnenseasaasensnssasenasasess 23

C. CONTENTION...........coorvrerernrrrrrscsseesnsssssnasensesssssnssassssssssasssssssssessarssssnssases 25
1 Queue COoNENLIONcccoreeeneeereeeneseneseesaessresscessssosssnassssssssssessaes 25

2 Memory Contentioncccceeemrereceeseecensssssnsessesessssesesnsananse .25

D. FIRST-COME-FIRST-SERVE SCHEDULING TECHNIQUE................... 25
1 AdVANIRGES...........o.ceeerrcniiiieissseistacsasasnsssssossssseseassrssenssssassnasss 25

2. Disadvantages ceesrensssenstesnesnasesnastrsesessesssseressesasnanasen 26

3. Comments.... et e s e 26

E. REVOLVING CYLINDER SCHEDULING TECHNIQUE.ccceoeuce 27
1. Index Assignment and Synchronization Arcs..................oooesrn 2]

2 Advantages ceeusresnssnsesstssasssasasassssesnsssesasaesaas e sssrsaasases 30

3. Disadvantages ceeesasssatsasesssesaesesstrsssannatesestensaseneransaraesesstaserassans 30

4 Alternate Revolving Cylinder Scheduling cestsasressessamsnssasenseases 31

IV. RESULTS AND ANALYSIS w32
A. INITIAL TRIALS ON TEST GRAPH..........covveemsmrirnsscnsennneensssemssnsenanes 32

B.
C.
V. CONCLUSION....
A. EXPANDED TESTING
B.
LIST OF REFERENCES
INITIAL DISTRIBUTION LIST

TESTS ON AN ACTUAL APPLICATIONGRAPH............ooovoeeeeeeen..

ADDITIONAL RESULTS

--

FUTURE RESEARCH

oooooooooo

Table 2.1
Table 2.2
Table 2.3
Table 3.1

LIST OF TABLES

PARAMETER DEFINITIONS

PHASE TIME DEFINITIONS

STATE DIAGRAM CODES

STATE DIAGRAM CODES

...14
.15

17

23

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10

LIST OF FIGURES

Data Flow Graph Example 4
Graphical Description of Queue Parameters . 8
Large Grain Data Flow Hardware Modelcececeercceinesncasnennons 10
Time on Processor Representation 16
Processor Internal View State Diagram 18
Processor External View State Diagram...............c.cocoecveeceeeeaee 18
Perfect Communication / Computation Overlap .20
Good Communication / Computation Overlap 21
Poor Communication / Computation Overlsp 2
Expanded Processor State Diagram 24
Data Flow Graph and Processor Assignment 28
Program Usage to Produce Results 32
Test Data Flow Graph..... 33
Test Graph on 3 Processors (Contention Free) 34
Test Graph on 3 Processors (with Contention)...............cocceeernrevererneersacenns 35
Test Graph on 4 Processors (with Contention) 35
Test Graph on 5 Processors (with Conteation)..................oocuvcunnneees .36
FCFS Contention versus No Contention 37
RC Contention versus No Contention 38
Throughput Decrease Due to Contention for FCFS and RC 39
Active Sonobuoy Graph..............ccccocerereenenrrenererensessnaresaesens40

L INTRODUCTION

The modemn military depends on real-time digital signal processing applications (such as radar and
m).nauppﬁcainumhpmdmm.uwdd:dmhohw
nature which must be processed quickly and accurately. Advances in computer technology have made it mach
easier to analyze this data. However, the signal processing applications are constantly improving also,
generating even more data more quickly.

Large Grain Data Flow (LGDF) graphs can be used to represent these applications. Data flow graphs
not only describe the dependencies between different parts of the computation required in an application, but
also provide built-in scheduling and synchronization. For example, on a hypothetical system with no
communication cost and an unlimited number of processors, nodes can synchronize by sending data and a
node can be scheduled as soon as all the required data is present at its input. Due to the genenality of this
representation, it can be used to specify parallelism at the instruction level [Ref. 1] as well as at the task level
[Ref. 2). The theoretical foundation for the consistency of such representations has been well studied [Ref. 3,
Ref. 4).

In practical implementations of this paradigm, the machine must provide mechanisms to manage the
data that flows through the graph and to capture the intrinsic scheduling and synchronization. These
mechanisms, typically operating at run-time, result in overhead that leads to suboptimal performance. The
amount of ovethead depends critically on the grannlarity of the parallelism expressed by the graph and on
whether the computations have conditionals and recursion. A direct implementation in hardware of the data
flow paradigm for general applications results in unmanageable overheat [Ref. 1, Ref. 5].

Any data flow implementation must perform buffering and fetching of data, allocation of graph nodes
to processors, their ordering on each, and the exact times at which they are scheduled. If all the related
decisions are done at run-time, the efficiency of the implementation suffers. The overhead can be reduced
effectively by using the node and arc attributes of the data flow graph at compile-time to simplify the run-
time management. Based on which decisions are made at compile-time and which ones are made at run-time,
data fiow implementations can be classified over a spectrum that ranges from fully static to fully dynamic
[Ref. 6). While dynamic implementations have more overhead, they are more flexible and are easier t0
implement. They also degrade gracefully in the event of individual processor malfunction. On the other hand,

static implementations are more efficient and lead to predictable performance which is crucial to real-time
systems. However, they are difficult to realize, are inflexible, and do not degrade gracefully. Their
effectiveness is determined by how accurately the computational requirements of the application are known.
This is typically a difficult problem and its solution of using the warst-case estimate can result in large
inefficiencies.

Therefore, real-time systems mmst strike a careful balance between the compile-time effort and run-time
complexity to get the desired and guaraniced performance. For classes of applications, such as signal
processing, such balance can be obtained by exploiting two properties of the computations required, the
availability of a priori knowledge of the amount of data produced and consumed and negligible use of
conditionals and recursion. When the amounts of data produced and cansumed by the nodes of a data flow
graph are known exactly, the applications are called synchronous data flow applications (Ref. 2]. When the
data arrives periodically, they have been classified as pipelined function-parallel computations [Ref. 7]. In
real-time signal processing applications, the trade-off between compile-time and run-time has an additional
dimension because of the periodic arrival of data. When external data arrives periodically, the intrinsic non-
determinism of data flow execution results in unpredictable program behavior. As a result, processed data
arrives unpredictably leading to the possibility of intolerable delays and insufficient buffer space, especially
under high loads.

A. THESIS SCOPE AND CONTRIBUTION

The focus of this work is on compile-time mechanisms for controlling data flow execution. A technique,
called revolving cylinder (RC) analysis originally introduced in [Ref. 8], in which, instead of generating
information, such as schedules, to control allocation or ordering on processors at run-time, a new data flow
graph is obtained at compile-time which gives a better throughput and behaves more predictably than the old
graph under the same run-time mechanism. The key idea in restracturing based on RC analysis is that
inserting dependencies in the graph can produce a graph with better performance. This idea can be traced back
to algorithms for overlapping complex operations on pipelined processors [Ref. 9]. This restructuring
selectively changes the conditions when a node will eater the list of executable nodes; howevez, choosing the
processor to schedule it on is left to the run-time dispstcher. This enables the actual scheduling to remain
dynamic keeping the ran-time overhead low.

This thesis defines a model for a Large Grain Data Flow system, which is loosely based on the
Departmens of the Navy AN/UYS-2 Digital Signal Processing System (also known as the Eshanced Modular

Signal Processor, EMSP) [Ref. 10]. Baseline results will be generated to show that it is possible to improve
the system throughput over that offered by first-come-first-serve (FCFS) scheduling by compile-time
restructuring of the LGDF programs following the RC technique. The utility of several computer programs
designed to analyze this LGDF model and FCFS and RC scheduling will be verified with the generation of
the results.

B. THESIS ORGANIZATION

Chapter II describes fully the LGDF system model. Included are descriptions of the hardware and
software, along with the joint hardware/software view. Chapter IIl is a description of the RCFS and RC
scheduling techniques. Chapter IV is an analysis of the data generated for the LGDF model using all the
scheduling techniques presented. Chapter V summarizes the results and presents possible topics for future
study.
C. ADDITIONAL RESEARCH

Additional results and forther analysis of the concepts in this thesis are included in [Ref. 11]. The
computer programs used 1o generate the results in this thesis are described in detail with complete examples
and program listings in [Ref. 12].

IL THE LARGE GRAIN DATA FLOW MODEL

A Large Grain Data Flow (referred to as LGDF) computer system can be defined in terms of the two
major categories which are used to define most computer systems, hardware and software.

A. SOFTWARE MODEL

The software model of a data flow system is usually visuvalized as a graph. There are two primary
elements to this data flow graph, nodes and queves. There are five secondary elements to the graph, system
input nodes, system output nodes, system input queues, system output quenes, and synchronization arcs.
These secondary elements are necessary for the computer program which models this system. Figure 2.1 is a
simple data flow graph example showing the graph symbols. Note that there are no special symbols for system
input and output queues, they are determined by their attachment to the system input and output nodes.

) LEGEND:

OUTPUT NODE
) T

Figure 2.1, Data Flow Graph Example

1. Terms

There are several important terms which will be defined here.

a. Cycle
The term ‘cycle’ is used to describe an arbitrary time unit. It could represent any unit of time,
but is usually interpreted as a microsecond.
b Word
The term ‘word’ is used to describe an arbitrary data element. In the model, it could represent
any unit of data size, but is usually interpreted as a byte.

¢. Processing
‘Processing’ refers to all activities performed by a node on a processor. This inclodes actual
node execution, the transfer of information between the processor and memory (both instruction and data),
and any latency.

d. Execudon

‘Execution’ refers only to the actual execution of the node on a processor to accomplish a
given task. It does not include any memory operations or latency involved with those operations.

e. Input and Output
'Ihetums‘hpm'md‘mtpm'musedinmyvaﬁemeodhnhnethecmfmim.
mmmmmmmmmmmmmwwm’mmmw&
2. Nodes

Nodes represent software modules which perform a specific function. This module could be a
program or a subroutine or a function. What is inside the node is not important to model the LGDF system.
The model is only concerned with the length of time it will take the node to complete its given operation and
the amount of data input into the node and output from the node.

In this model, a node is characterized by several parameters.

a. Execution Time

The execution time (in cycles) is the time required by the node to complete its function once
the data and the node instructions have been loaded onto a specific processor.

d. Setup Time
The setup time (in cycles) represents a constant latency before a2 node is able to access any
memory modules after being assigned to a processor.
¢. Breakdown Time

The breakdown time (in cycles) represents a constant latency for the node that has completed
memory operations before the processor is made available in the free processor pool.

d. Instruction Size
The instruction size is listed in words. The instruction size is used to determine how long it
will take to load the code segment represented by the node to a processor for execution. This time is dependent
on the data transfer rate of the hardware.

¢. Processor Type
The processor type is used to specify nodes which must use a specific type of processor.

3. Queues
Queues are used to represent the flow of data. Each quene connects a pair of nodes, and the amount
of data transferred between the nodes is identified. Data is transferred from the node at the tail of the quene
(named the source node) to the node at the head of the quene (named the sink node).
In this model, a quene is characterized by several parameters,
a. Threshold Amount
The threshold amount is the amount of data (in words) required to be on the queue for the
sink node to begin execution.
b. Produce Amount
The produce amount is the amount of data (in words) added to the quene upon completion of
one execution instance of the source node.
¢. Consume Amount

The consume amount is the amount of data (in words) removed from the quene upon the start
of one execution instance of the sink node.

d. Wrise Amount
The write amount is the amount of data (in words) written from the source node to memory
uvpon completion of cne execution instance.

e. Reod Amount

The read amount is the amount of data (in words) read by the sink node from memory prior
to the beginning of one execution instance.

J. Capacky
The capacity is the total amount of data (in words) which can be stored on the queue. If the
capacity of the quene would be exceeded, a source node cannot produce any more data until the sink node
consumes data to open space on the quene.

8- Inidal Length
The initial length is the amount of data (in words) is placed on the queue at system start-up.

A. Relationskip among the Parameters

There are several important distinctions to be made between the parameters. It would appear
data queues, the produce and write amounts would be the same quantity as would consume and read amounts.
However, the functions performed are distinctly different. The read and write amounts represent actual data
transfers required bétween a processor and memory. These itransfers require a large amount of time to
complete. The produce and consume amounts represent a control function within the scheduler. No data is
actually transferred but the queue length recorded by the scheduler is adjusted. The difference would become

There is one major requirement to be met by the parameters. This requirement is that the
capacity of the queve must be greater than or equal to the threshoid. If this is not the case, thea there could
never be enough data on the quene o cause the sink node to trigger.

For most data queues, the threshold and consome amounts will be the same. This means that
the sink node requires a set amount of data to trigger. When this threshold is reached, the sink node will
consume that much data in execution.

In many cases, the produce amount will also be the same as the threshold and consume
amounts. This represents a linear program. The source node produces the exact amount of data which is

required and used by the sink node. However, this is not always the case. If the produce amount is less than
the threshold, then the source node must execute mulitiple times before triggering the sink node. If the produce
amount is greater than the consume amount, the sink node must execute mulitiple times upon completion of
the source node.

Figure 2.2 is a graphical representation of the quene parameters.

Figure 2.2. Graphical Description of Queue Parameters

4. System Input Nodes and System Input Queues

System input nodes are necessary to simulate multiple execution instances of the graph. Upon
initiation of a graph instance, this node is activated. System input nodes have the same parameters as nodes
as defined above. However, system input nodes will opezate on a special input/output processor. The system
input node is the sink node of an extemal queue. This external quene does not really exist, but functions as a
queue with infinite capacity and a threshold and consume amounts of one data unit. When the graph instance
hhiﬁud.mbuuﬁtkmmﬁsmmwmfwﬁmhmmmm
designated system input queves. They fanction exactly as the data queves described above. However the data
written to them comes from an 1/O processor.

S. System Output Nodes and System Output Quenes

System cutput nodes are necessary to simulate maltiple execution instances of the graph. Once all
the quenes into this node have exceeded threshold, this node is activated. System output nodes have the same
parameters as nodes as defined above. However, system output nodes will operate on a special input/output
processor. The system output node is the source node of an inherent queve. This inherent quene does note
really exist, but functions as quene with infinite capacity. As this system output node is executed, it can be
assumed that all input queues to this node transfer the data equal 10 the consume amount to the outside as data
output. The input queues 1o the system output nodes are designated system output queues. They function
exactly as the data queves described above. However the data read by them is read by an /O processor.

6. Synchronization Arcs
Synchronization arcs are a special subclass of the quenes described above. However, they function
slightly differently. They represent control signals which will be described Iater. Due to the control natare of
these arcs, the produce and consume amounts are generally one, representing a counter. However, the read
and write amounts will always be zero. This is because the synchronization arcs reside oaly in the scheduler
memory, and 0o data is actually ever transferred to a processor. The threshold and initial length amounts are
highly variable depending upon the RC analysis and used to trigger nodes in a specific order.

B. HARDWARE MODEL

The Large Grain Data Flow system is a multiprocessor system. The major component of the system is
the arithmetic processor. Additional components modeled inclade the input/output processor, giobal memory
modules, the scheduler, and the data transfer netwark. Figure 2.3 is a diagram of the LGDF hardware model.

| 10P SCHEDULER

EXTERNAL MEM
LINK

IOP - INPUT / OUTPUT PROCESSOR
AP - ARITHMETIC PROCESSOR
GM - GLOBAL MEMORY MODULE

Figure 2.3. Large Grain Data Flow Hardware Model

1. Arithmetic Processor

The arithmetic processors in this model consist of two units, the execution unit and the control
unit. The nodes compiete their tasks on the execution unit. All communications and setup and breakdown
Iatency are handied by the control unit. Two nodes can be processing on a given processor during a given
time. One node can be doing a task on the execution unit. The other node can be on the control unit, either
preparing to execute when the execution unit is available, or removing itself from the processor and writing
results when finished execution. The arithmetic processors are assumed to be sophisticated, able to control
many instroctions and manipelate large amounts of data on the chip. This means that no data is transfzrred
during the processing of a node, only before and afier execution.

10

2 Input/Output Processor
The inpat/ostput processor acts no differendy from the arithmetic processors deaczibed above.
However, it only handles the system input and outpat nodes and system input and outpet quenes. Data is
transferred into and out of the system through this processor. The input/output processar does ot factor ingo
stilization statistics.
3. Scheduler

The scheduler is the unit which tracks the entire system state. It also acts as a memory controller,
maintaining a table of all the instrection and data locations, tracking the quene levels 10 decide whea to trigger
nodes. It is sssumed the scheduler has sufficient internal memory 0 track all of the system information. A
scheduler latency time, expressed in cycles, can be assigned to abstractly represent the time it takes the
scheduler to change the state of its local memory when the amounts oo a quene are adjasted.

4 Giobal Memory Module

The system main memory is modeled as a series of modules. These modules are considered giobal
MMmuwwmm.Ammwmﬂwuhmm
module to access a queune for either a read or write operation, or to load a node instruction. This information
is supplied 0 the processor by the scheduler. Multiple modale accesses can progress simultaneously;
however, at any time, only s single processor can access a given memory module. The size of the memory is
assumed large enough to meet any requirements. Nodes and quenes can be assigned to specific memory
modules by the nser or arbitrarily by the scheduler.

S. Data Transfer Network
The data transfer network is an abstraction in this model. It is assumed that all transactions
between all current processor and memory module peirings can proceed. No transaction will be delayed
becanse the network is busy. Thus, the data transfer network acts as a full crossbar switching network. There
is a constant data transfer time to transfer one word of data between the processor and memory. This is known
a8 the word communications time expressed in cycles per word.

11

C. OVERALL SYSTEM MODEL

Sections A and B above describe the software and hardware specifics. To define the overall system, the
inseraction of the software and the hardware must be considered. This can best be displayed by considering
the software and hardware perspectives of what is actmally happening. The node and the processor are the
elements choses for these perspectives.

1. Node Perspective
The node is the primary software element. An LGDF system is designed so that a node, when all
the data is availsble, can be assigned 10 any available processor of the type that the node requires. A ready list
is maintained of all the nodes which are ready to execute.
The scheduling wnit knows the structure of the entire data flow graph and can track the status of
all nodes and quenes. These events are between the node and the scheduler: Check if Data is Available, Check
if Data Space is Available, Check if Processor is Available. The rest of the events are between the node and

the assigned processor.

8. Check {f Data is Available

The scheduling unit checks each quene which has the node as a sink. If all of the quenes
which enter the node are above threshold, then the node is ‘input’ ready.

b. Checkif Data Space is Available
The scheduling unit checks each quene which has the node as a source. If all the quenes have
enough space below capacity (0 receive the data produced when the node completes, then the node is ‘output’
ready. The node is now assigned to the node ready list.
¢. Check (f Processor is Availabie

The node ready list is a First-Come-First-Serve wait list. The scheduler moves along the list
from head to tail and checks for each node in the list if the proper type of processor is available. If a processor
of the proper type for the node is available, the node is assigned to that processor.

d. Setup
The node begins preparation for execution as specified in the node setup latency parameter
(in cycles). The node is utilizing the processor control unit.

12

¢. Lead Instruction
The node loads the code segment from memory o the control unit. This is specified by the
node instraction length parameter (ia words) and the word communication time (cycles per word) along with
any delay in accessing the memory unit where the instructions reside.

J. Read Data / Consume Dota

The node proceeds 1o read the data from the appropriate quenes, up to the specified read
amount parameter for the queues. The acheduler simultaneously consumes data from the quenes up to the
specified consume amount parameter. The time spent for each queue is specified by the read parameter (in
words) and the word communication time (Cycles per word), along with the scheduler latency time (in cycles).
Additionally, delays could result if the memory unit where the data is stored is currently being used by another
processor. This event is not complete until the information for all input quenes has been read and/or
consumed.

8- Check for Execution Unit Availability

Once the data queves are read, the node is ready for execution. However, the execution unit
might be in use by another node. Thus, the node may be blocked, waiting on the execution unit. Once the
execution unit becomes available, the node will switch from the control unit to the execution unit.

K. Executs
The node performs execution as specified by the node execution time parameter (in cycles).

L. Check for Control Unit Availability
Once the node has completed execution, it is ready to output the results and remove itself
from the processor. However, the control unit might be in use by another node. Thus, the node may be
blocked, waiting on the control unit. Once the control unit becomes available, the node will switch from the
execution unit to the control unit.

J- Write Data / Produce Data

‘The node proceeds to write the data to the appropriate queues, up to the specified write
amount parameter for the quenes. The scheduler simultanecusly produces data to the queves up to the
specified produce amount parameter. The time spent for each queue is specified by the write parameter (in
words) and the word communication time (Cycles per word), along with the scheduler latency time (in cycles).

13

Additionaily, delays could result if the memory unit where the data is stored is currently being used by another
processor. This event is not completed until the information for all output quenes has been written and/or

produced.

k. Breskdown
The node removes itself from the processor as specified by the node breakdown latency

parameter (in cycles). Upon completion of breakdown, the node is disassociated from the processor. This
completes one entire iteration for a node.

L Summery ‘

Table 2.1 provides a summary of the above listed eveats and the proper calculation of their
processing times. The term ‘delay’ refers to stalls caused by memory conflicts, the inability 10 access a quene
or instruction in memory due to that memory module being used by another node.

Table 2.1: PARAMETER DEFINITIONS

Code Definition / Time
Execution’ﬁm-e 1Node Execuur;n 'IimTPm:m (i:= cycles)
SetupTime Node Setup Latency Time Parameter (in cycles)
BreakdownTime Node Breakdown Latency Time Parameter (in cycles)
InstLen Node Instruction Length Parameter (in words)
WriteAmt Queue Write Amount Parameter (in words)

ReadAmt Queue Read Amount Parameter (in words)

CommTime Word Communications Time (in cycles per word)

LatencyTime Scheduler Latency Time (in cycles)

LoadTime CommTime * InstLen + delays

ReadTime [(LatencyTime + CommTime * ReadAmt) + delays }
for all queues with the node as a sink

WriteTime [(LatencyTime + CommTime * WriteAmt) + delays)
for all queues with the node as a source

14

m. Event Reductions

Most all of the events result in a time mark for the next event. Therefore, several of the events
can be combined to simplify the model. Many of these events, although different, contribute t0 an overall time
which lends itself 10 easier analysis of the results. The resulting event reductions are defined as phases for
easy differentiation with the previously described events.

(1) Input Phase - This event represents the total time a node spends on the control unit for &
given iteration, from the time it is assigned to the time the execution unit becomes svailable. It includes these
events: Setup, Load Instruction, Read Data / Consume Data, and Check for Execution Unit Availability.

(2) Execution Phase - This event represents the total time a node spends on the execution
unit for a given iteration, from the time the execution unit becomes available to the time the control wnit
becomes available. It includes these events: Execute, and Check for Control Unit Availability.

(3) Output Phase - This event represents the total time a node spends on the control unit for
a given iteration, from the time the control unit becomes available to the time breakdown is completed. It
includes these events: Write Data / Produce Data, and Breakdown.

Table 2.2 is a summary of the time calculations for these phases. The term blockage refers to
stalls caused by the inability of a node to switch to the other processing element (control unit to execution
unit or execution unit t0 control unit) until the node on the other processing element completes its operation.
It is to be noted that the contention for memory modules during the input and cutput phases is implicit in
‘ReadTime’ and ‘WriteTime’ respectively.

Table 2.2: PHASE TIME DEFINITIONS

Code Definition / Time
InputTime SetupTime + Load Time + ReadTime + blockage
ExecuteTime ExecutionTime + blockage
OutputTime WriteTime + BreakdownTime + blockage

15

8. Represeniation Comparison
Figure 2.4 is a graphical representation of these times as associated with a processor. Two
diagrams are given. The first diagram is the detailed model. The second diagram is the reduced model. As far
as node scheduling techniques are concerned, the reduced model will be used.

CONTROL EXECUTION CONTROL EXECUTION
UNIT UNIT UNIT UNIT

DETAILED MODEL TIME REDUCED MODEL

Figure 2.4. Time on Processor Representation

2. Processor Perspective
The processor can be best described as a finite state machine. Two finite state diagrams are given.
These state diagrams represent the same system, but from different points of view. Figure 2.5 is the internal
view state diagram. This is the state of the processor and nodes as it appears on the processor. Figure 2.6 is
the external view state diagram. This is the state of the processor as it appears to the outside world.

16

Table 2.3 kists the codes used to define the states. Note that one control unit code and one
execution unit code are required to define a complete siate.
Table 2.3: STATE DIAGRAM CODES

State Code State Description
ExeFree Execution Unit is Free
ExeBusy Execution Unit is Busy (node is in Execution Phase)
ConFree Control Unit is Free (Processor Available for Node Assignment)
ConBusy Control Unit is Busy (a node is performing either Input or Output)
Conlnput Control Unit is Busy with a node performing Input
ConOutput | Control Unit is Busy with a node performing Output

Several of the transitions require further explanation. Recall that two different nodes can be
operating on a processor at any given time. One node is performing execution on the execution unit, and the
other node is performing either input or ouiput on the control unit.

(1) In the case where one node is executing and another is performing input, then neither
node can go to the next state until both actions are completed, as the nodes must swap the units they are
currently occupying, with the node which completed execution moving to the control unit to perform output
and the node which completed input moving to the execution unit to perform execution. This transition is
defined as ‘Execution and Input Completed’.

(2) In the case where one node is executing and another is doing output, there are two
possible occurrences. If the node performing output completes first, then it simply is removed from the
processor. However, if the node executing completes first, it stalls while waiting for the other node to
complete output. When this second node completes output, it will disassociate itself from the processor and
the node which completed execution will obtain use of the conirol unit This transition is defined as
‘Execution Completes then Output Completes’.

17

Figure 2.5. Processor Internal View State Diagram

START Execution

Node
Assigned

Input
Figure 2.6. Processor External View State Diagram

ompletes

18

M. SCHEDULING TECHNIQUES

A key factor in the Large Grain Data Flow (LGDF) system is the scheduling of the nodes in the data
flow graph to the processors. This chapter will discuss important scheduling issues inherent to the LGDF
A. TERMS

Several important concepts are used in the analysis of the scheduling techniques.

1. Throughput

Throughput is the total number of instances completed in a given time interval. Throughput is
uniform if the time interval between the completion of consecutive graph instances is constant.

2, Response Time

The response time is the time it takes to complete one iteration of a graph. This is the actual time
from the beginning of graph processing to the end of graph processing for a given graph iteration. The
respouse time is uniform if each graph instance completes in a constant time.

B. COMMUNICATION / COMPUTATION OVERLAP

An important aspect of this LGDF model is the dual unit processors. Each processor has a control unit
andmmcnﬁmmﬁtDiﬁamMmheopmﬁngﬁmﬂmﬂyudiffemnmﬁaofﬂnm
processor. All communications and node control functions take place on the control unit. It is desirable to
have these coatrol and communication functions done concurrently with the execution of another node. This
is known as communication / computation overlap. Ideally, the communications and control functions would
completely overlap with the execution.

To fully appreciate the techniques, the concept of communication / computation overlap must be
introduced. This can best be shown graphically. Previously, Figure 2.4 displayed one node upon 8 processor.
However, in this LGDF model, two nodes will normally be on a processor simultaneously. There are many
possible sitsations which can occur.

19

Many of these situations are described graphically in detail. Note that these figares display the state of
the processor in the middle of activities. The node designated ‘node 0’ bas been execating for some time.
‘node 1’ has just been assigned to the processor.

In the following descriptions, the term ‘communication’ represent all commmnications and control
functions and latency times. The term ‘computation® represents the actual processor execution. These two
terms are selected as they are prevalent in current Eterature,

1. Perfect Communication / Computation Overlap

Figure 3.1 displays the perfect overlap condition. This condition is rather unrealistic as it is highly
unlikely that the communications would perfectly match the computation. However this is the theoretical

%

CONTROL
UNIT

Figure 3.1. Perfect Communication / Computation Overlap

2. Good Communication / Computation Overiap
Figure 3.2 displays good overlap conditions (assuming that pesfect overiap will not occur). In this
case, communication is completaly overiapped with computation. This sitnation will tend to occur when the

memory access speoed is fast compared to processor speed, or the instructions represented by the nodes require
large amounts of processing compared to the amount of data transfer.

Figure 3.2. Good Communication / Computation Overlap
Several conditions are displayed in Figure 3.2. The heavily shaded portion represents a blocked
control unit. Node 2 has completed its input, but it cannot begin execution because node 1 has not completed
execution. The lightly shaded portion represents an idie control unit. In this case, no node is ready to begin
processing. Neither of these conditions is bad since the execution unit is operating at its full capability.

21

3. Poor Communication / Computation Overiap
Figure 3.3 displays poor overiap conditions. In this case, commmmication is not completely
overiapped with computation. This situation will tend to occur when the memory access speed is slow

compared to processor speed, or the instructions represented by the nodes require small amounts of
processing compared to the amount of data transfer.

Figure 3.3. Poor Communication / Computation Overiap

Sevenal conditions are displayed in Figure 3.3. The heavily shaded portion represents a blocked
execution unit. Node 1 has completed execution, but it cannot commence output until node 2 completes input.
The lghtly shaded portion represents an idle execution unit. In this case, the control unit is busy forcing the
execution unit to be idle. As output has priosity over input in the model, the beginning of execution is further
delayed until the next ready node completes input. These conditions represent bad performance becanse no
useful execution is being performed.

4. Realistic Communication / Computation Overiap

In actual processing, it is likely that ‘good’ overlap will occur at times and ‘poor’ overiap will
occur at other times. The various scheduling techniques to be discussed later in this chapter will attempt t0
force the system to have more ‘good’ overlap node to processor assignments than ‘poor’ overlap node t0
processor assignmer is. 7 his is not necessarily an easy undertaking as in general, all nodes bave wide ranges
of execution times and ruquired volumes of communication.

S. Revised Finite State Machine

Figure 2.5 provided a state diagram to describe the processor. With the possible overlap conditions
defined in the above diagrams, an expanded state diagram can be provided to0 more accurately describe the
model, provided in Figure 3.4. Table 3.1 provides the processing wnit state codes. Ouce again, an execstion
wnit code and a control nit code are necessary 10 define the system state.

Table 3.1: STATE DIAGRAM CODES

State Code State Description
Exeldle Execution Unit is Idle

ExeCalc Execution Unit is Calculating

ExeBlock | Execution Unit is Blocked with a node waiting for the Control Unit
Conldle Control Unit is Idle (Processor Available for Node Assignment)
Conlnput Coantrol Unit is Busy with a node performing Input

ConOutput | Control Unit is Busy with a node performing Output

ConBlock | Control Unit is Blocked with a node waiting for the Execution Unit

In node to processor scheduling, it is important to minimize the execution unit idle states (Exeldie)
and execution unit blocked states (ExeBlock). Ignoring the end points of operation (where there must be some
execution unit idle time), the goal is to cycle continuously through the following states (this cycle is
highlighted on the state diagram):

=> (Conldie / ExeCal) ->
~> (Conlnput / ExeCalk) >
~> (ConBlock / ExeCalc) >
-> (ConOutput / ExeCalc) —>
~> recycle

Figure 3.4. Expanded Processor State Diagram

C. CONTENTION

Contention refers to the inability for a communications operation 10 occur between a processor and 8
memory module dee to the memory module being utilized by another processor. This results in a delay of the
node on the processor requesting use of the memory module.

L Queue Contention

A quene can only be accessed by one node at a time. Therefore, if the source node wants 10 write
data and the sink node wants 0 read data, one would be delayed until the other completes its current operation.

2, Memory Contention
Memory contention is generally more broad than quene contention, since quene contention

represents two nodes trying to access the same set of locations in the memory modale. With memary
contention, one proceseor is accessing a node or queue in a specific memory unit. This could be either reading
from a queue, writing to a different quene, or loading s node program. While this operation is taking place,
0o other queue or node program can be accessed by another processor from the same memory module.
D. FIRST-COME-FIRST-SERVE SCHEDULING TECHNIQUE

First-Come-First-Serve (FCFS) scheduling can more properly be stated as a lack of scheduling. Nodes
are assigned to processors in the order in which they are made ready. There is no forethought or sttempt at
optimization.

1. Advantages
a. Simplicity

Since there is no special order 10 the assignment of nodes, the amount of overhead (software
and additional hardware) required for the assignment is negligible.
b. Processor Utilization

Processors will be in use constantly. As long as nodes are in the ready list, they will be
assigned to available processors.

¢. Minimal Quens Contention
As 3 function of the FCFS algorithm, the queve contention is minimized. This is due $0 the
fact that a node cannot begin input until all queves into the node are ready. Therefore, the source node will
write data 0 a qguese. Then, the quene would be ready to be read by the sink node.

d. Feuk Tolerance
With an FCFS implementation of scheduling, the system is fanlt tolerant. Since nodes will
not be assigned to processors until all data is ready, no deadlocks will occur.

2. Disadvantages

a. Communication /| Computation Overiap
There is no guarantee of good communication / computation overlap with FCFS, since nodes
are placed on the next available processor, regardiess if whether the communication times and computation
times can be made to overiap.

b. Unpredictable Response Time and Throughput
With the communication / computation overiap that is likely to change from one graph
iteration to the next, it is difficult to predict the graph response time and throughput.

¢. Memory Contenton
Since nodes are assigned to processors when they are ready, there is no way to predict which
memory modules would be required at any time.

3. Comments
It can be expected that if communication time is very small compared to computation time for
most nodes in the graph, then PCFS can perform well since the effects of the disadvantages will be minimized.
Conversely, if the communication time is large compared to computation time, then the disadvantages will
be accentuated. We expect the latter 10 be the case precisely because the graphs are LGDF.

E. REVOLVING CYLINDER SCHEDULING TECHNIQUE

The Revolving Cylinder (RC) scheduling technique is designed specifically for Large Grain Data Flow
systems. It is assumed that the application requires the specified data flow graph to be executed continaously.

The premise is that at any given time the nodes of one graph equivalent must be processed. This means
that not all of the nodes will be working on the same data set, but one instance of each node is ready to work
on a data set. With the RC technique, this one graph equivalent will be mapped 10 the available processors.
This mapping is known as the cylinder. The term revolving cylinder refers to the fact that additional cylinders,
exactly the same as the first, can be placed one after another. Essentially, the execution resemnbles a rotating
drum.

There are four variations of the revolving cylinder technique that will be described. The first variation
to be presented is Start After Finish (SAF). The second variation, Start After Start (SAS) determines the
synchronization arcs in a different manner. In both SAF and SAS, there is no requirement that nodes always
be scheduled to the same processor. However, SAF and SAS can be further modified by binding the nodes o
specific processors. These variations are termed SAFD and SASD respectively.

1. Index Assignment and Synchronization Arcs

In a given slice, many of the nodes will not be working on the same set of data, therefore, the nodes
are assigned an index to reference the data set that node is currently operating on. Once the indices are
determined, synchronization arcs are generated. These synchronization arcs are control signals which enforce
the cylinder structure.

Figure 3.5 is a simple data flow graph which is scheduled on two processors. Note that for the
demonstration of the RC technique, the only node parameter is the execution time. Also note that the input
and output nodes do not get mapped to the cylinder. The node identifier is the letter and the node execution
time is the oumber ipside the node. In the processor mapping, the index is the number in parenthesis.

Two cylinders are mapped. Indices are assigned to0 the first cylinder as follows. Ignore the
synchronization arcs in determining data dependencies. The first node mapped is ‘A’. Therefore, it is given
an index of ‘0’. Nodes ‘B’ and ‘D’ depend on the results of ‘A’. Node ‘B’ appears afier node ‘A’ on the same
processor. Therefore, it can work on the same data setas *A’, hence an index of ‘0’. However, node ‘D’ begins
processing at the same time as node ‘A’. Since it depends on the resuits of ‘A’, node ‘D’ mmst be operating
on a previous data set, hence an index of ‘-1°. Node ‘C’ depends only on node ‘B’ for data. Although it is
scheduled to a different processor, node ‘C’ does not start until node ‘B’ completes, therefore, it can still

operate on the same data set as ‘B’, thus an index of ‘0’. Node ‘E’ depends an data from both nodes ‘C’ and
‘D’. It is assigned an index of *-1° for two reasons. First, node ‘D’ has an index of ‘-1°. Node ‘E’ starts after
‘D', 0 it can bave the same index, ‘-1°. Second, node ‘C’ is processing at the same time as node ‘E’.
Therefore, node ‘E’ must be operating on & previous set of data. Therefore, since ‘C’ bas an index of ‘0’, then
‘E’ must have an index of *-1°. The second cylinder is mapped in the same manner as the first, but with the
indices increased by one.

LEGEND (additions to figure 2.1)
+> Synchronization Arc
@® Token

Figure 3.5. Data Flow Graph and Processor Assignment

This is the Start After Finish (SAF) version of the revolving cylinder technique for generating the
synchronization arcs. The sink node at the head of the synchronization arc will be allowed to start after the
source node at the tail of the arc completes. The synchronization arcs are generated as follows. Nodes ‘A’,

28

‘B’ and ‘C’ openate in consecutive order on the same instance. Therefore, they maintain data dependence and
po synchronization arcs are necessary between them. Likewise, nodes ‘D’ and ‘E’ maintain sach a data
depeadence. However, in this mapping, node ‘C’ executes on the same process as node ‘D’. To set up the
cylinder, node ‘C’ must wait for one instance of node ‘D’ to execute. Therefore, a synchronization arc is
genenated between °C” and ‘D’. Looking at the whole cylinder, node °A’ cannot start executing until node ‘E’
of the previocus instance completes. Therefore, a synchronization arc exists between ‘E’ and ‘A’.

Tokens on synchronization arcs represent a counter. The tokens listed represent the initial length
parameter of the synchronization arc as defined in the previous chapter in the section on queues. It is obvious
that these tokens are needed. The synchronization arcs define the need for node °E’ to complete before node
‘A’ begins. However, no instance of ‘E’ can ever occur until one instance of node ‘A’ executes. Therefore,
the initial token will allow the process to start. Likewise for the token on the synchronization arc between
nodes ‘D’ and ‘C’. After multiple instances of the graph have executed, the cylinder should look as it is with
all nodes at the proper index.

Showing two cylinders back to back illustrate some important concepts of the RC algorithm. First,
it takes a number of cylinders to complete a graph iterstion. This quantity is equal to the range of different
indices in the cylinder. The required time is equal to the number of cylinders mulitiplied by the time 0
complete one cylinder. In this example, two cylinders are required. Note that the range of indices is two (from
0 to 1). Therefore, the time to complete one graph instance is tea cycles (two cylinders multiplied by five
cycles to complete a cylinder). Note that this is longer than the minimum possible time to complete the graph
on two processors which is seven cycles (based on longest path) in this example. However, it is gnaranteed
that it will take ten cycles to complete each and every instance. It is also guaranteed that one instance will
complete during each cylinder. In this example, one iteration completes every five cycles. Therefore, the
revolving cylinder technique resuits in uniform throughput and uniform response time.

The above example is rather simplistic and not representative of the Large Grain Data Flow mode!
studied. In the LGDF model, the nodes are not operating in distinct blocks. One node actually begins
preparing to execute on a processor before the previous operating node is finished. Therefore, determining
the actual indices and arcs is not a simple matter on even a moderately complex data flow graph. However,
the start after finish synchronization arc generation and revolving cylinder assignment technique is still valid.

2. Advantages

a. Prediciabie Performance

Since uniform cylinders are assigned to the processor set, the system will have more
predictable throughput and average response time.

b. Moaximize Communication /| Computation Overiap
The nodes in the cylinder can be placed to achieve maximum overiap of communication time
with competation time. If the communication cost of the system is low, there will be little gain to the
¢. Reduce Memory Contention
Once the cylinder is mapped, it can be determined which nodes and queves must be accessed
at the same time. Therefore, nodes and queves can be mapped to different memory modules to ensure that
they are not active at the same time, reducing memory contenticn. This could be a difficult task as quenes are
opesated on by different nodes at different times. However, any reduction of memory contention will help.
This is impossible with FCFS as it is never known which operations will proceed at any given time.

3. Disadvantages

a. Increased Overkead
Overhead is significantly increased with the requirement to generate and track the
synchronization arcs. Also, it is important to generate proper tokens on the synchronization arcs to assure that
deadlocks will not occur due to dependencies which cannot be met.

b. No Overlap Between Cylinder Slices &
In this LGDF model, all ncdes have some input and some output time. However, with the
start after finish technique, the first node in the next cylinder cannot begin processing until the last node in
the current cylinder completes. Thus, there is no possible communication / computation overiap between
¢. Unbalanced Loads
A related issue to the non-overlap between cylinder instances is the issue of unbalanced
loads. An ideal cylinder would have the processors completely load balanced. That is, all processors would

compiete processing at the same instant. However, this is usually not the case. The next cylinder cannot begin
processing until the last node of the current cylinder completes processing. Therefore, if the last node on one
processor completes long after the nodes on the other processors, the additional processors would remain idle
for extended periods and the throughput reduced.
d. Quens Contendon

Queue contention can be minimized through proper mapping. However, it is now a factor to

be taken into consideration.
4. Alternate Revolving Cylinder Scheduling

An altemate version of the revolving cylinder technique, Start After Start (SAS), generates the
synchronization arcs based on when a source node node begins, rather than after it ends. This eliminates the
lack of communication / computation overlap between consecutive cylinder mappings.

31

IV. RESULTS AND ANALYSIS

This chapter is an analysis of the initial results for the use of the Revolving Cylinder algorithm. The
programs used to generate the results are described fully in [Ref. 12]. Figure 4.1 is a diagram of the
relationship of the programs used to generate the results,

LGDF
Graph
Order Generator

i Node Schedule

Cylinder Mapping Program (MAP)
{ Cylinder

Synchronization Arc Generator (SAG)

—

+ Restructured Graph

FCFS Event Simulator (SIM) —

SIMULATION RESULTS

Figure 4.1. Program Usage to Produce Results

A. INITIAL TRIALS ON TEST GRAPH

The initial tests were performed on a simple data flow graph to generate baseline results for the
Revolving Cylinder algorithm. This simple graph consisted of one input node and output node (execution
time = 0), and 15 uniform instroction nodes (execution time = 10000). The nodes had no setup or breakdown
latency, and an instruction size of zero. Therefore, the anly communication is due to the transfer of data
between processors and memory. The produce amount, consume amount, write amount, read amount, and
threshold amount were all equal for a given quene. However, this number was different for the quenes in the
system (either 1000, 2000, or 4000 words). The queue capacity is eight times this amount. Several mappings

32

of this graph were used at varioss communication costs over three, four, and five processors. Figure 4.2 shows
the test graph, with the numou. representing the quantities for the quenes.

Figure 4.2. Test Data Flow Graph
The mappings of the nodes to processors for this graph was determined manually, attempting to
maximize the communication / computation overiap. It is noted that in the all mappings for three processors,
the processors were uniformly load balanced, each processor having exactly the same mapping (as far as
computation and communication times) as the other two processors. The mappings for five processors were
fairly well load balanced with exactly three nodes on each processor. However, the amount of communication
overlap on each processor varied. The mappings on four processors were more difficult to determine as the

nodes do not map evenly 0 processors.
All mappings were tested at four different communication costs, one, two, three, or four cycles o
transfer one word of data between a processor and memory. The scheduler latency was set at zero. For this

33

graph, the yielded communication / computation ratios are 0.4, 0.8, 1.2, and 1.6 respectively. The simulation
was set to compute the maximum throughput. Along with a First-Come-First-Serve (FCFS) test for the graph,
each mapping was tested using four different variations of the Revolving Cylinder (RC) scheduling technique
as described in the previous section: Start After Finish (SAF), Start After Start (SAS), Start After Finish with
nodes bound to processors (SAFD), and Start After Start with nodes bound to processors (SASD).

In these tests, the number of memory modules was equal to the number of arithmetic processors in the
system. All nodes mapped to a given processor were asssigned to ane memory module. The quenes were
assigned to the memory module to which their sink node is assigned. For FCFS tests, the same memory
assignments were used as for the RC analysis to allow for direct comparison.

One important note must be made about the charts which follow. Although there are several mappings
for each of the scheduling variations, only the result of the best mapping is shown. At different
communication costs, the best mapping would often be different. Even at the same communication cost,
various scheduling techniques could be better on different mappings.

The first test resuits were for a contention free situation. This is an ideal result where a node or quene
is always able to access the memory unit where its required data is located. Figure 4.3 shows the results of
the contention free test on three processesors.

T
H
R
o
v
Q
H
P
u
T

Y

o8 12
COMMUNCATION / COMPUTATION

Figure 4.3. Test Graph on 3 Processors (Contention Free)
In this test, it is apparent that with no contention, FCFS provides the best throughput. SAS can come
close to FCFS, but SAF is lacking, due to the inability to overlap consecutive cylinders. Processor binding
yields no significant difference.

The next test is with memory contention a factor. Figures 4.4, 4.5, and 4.6 provide the results for three,

four, and five processors respectively.

“CUTOCODIIT

“4CVIODCOIZT

os
COMMUNICATION / COMPUTATION

Figure 4.5. Test Graph on 4 Processors (with Contention)

35

T
H
n
o
v
a
M
P
]
T

SRc2aalsTBENBRRRNBBBLRYY

Figure 4.6. Test Graph on 5 Processors (with Contention)

Several points are apparent. At low communication costs, FCFS will provide high throughput.
However, as the communication cost increases, FCFS throughput sharply decreases. The RC techniques show
that increased throughput over FCFS is possible, especially as the communication cost increases. This is due
to being able to map the nodes such that contention is minimized. However, as to determining the best
variation of this technique, there is no consensus of results. Certain variations proved better for certain
mappings. As stated previously, these charts show the best result for the scheduling variation. These results
are not necessarily from the same mapping. Furthermore, only three or four mappings were used and thére
are many more mappings which are possible.

Figure 4.7 is a plot showing the effects of contention versus no contention for FCFS. It can be easily
seen that contention is a major consideration, except at very low communication costs.

T
H
n
0
v
a
H
P
v
T

Figure 4.7. FCFS Contention versus No Contention

37

Figure 4.8 is a plot showing ths effects of contention versus no contention for RC. Note that although
contention still affects the throughput, the effects are mmch redeced compared with FCFS. As with the
previous charts, the best results from RC are plotted.

»
 J
=
n
8
»
»
t 4
T =
H =
R
- 2
U =
L
H 8
P »
U »
T v
*
*
“
3
”
"
*
o

Figure 4.8. RC Contention versus No Contention

To demonstrate the improvements, Figure 4.9 is a plot comparing the contention free case and the
contention case for both FCFS and RC. The ‘Throughput Decrease’ is the difference between the contention
free and contention case divided by the throughput of the contention free case for the given number of
processors and communication / computation ratio, and converted t0 a percentage. This percentage represents
the degredation caused by adding memory contention 0 the model, with a higher figure representing higher
degredation. As expected, it is seen that as the communication / computation ratio increases, the degredation

due to contention also increases. The number of processors plays only & small part in the ratio. An important
note is that RC is not nearly as degraded by contention compared with FCFS.

—d
L

12
COMMUNICATION / COMPUTATION

Figure 4.9. Throughput Decrease Due to Contention for FCFS and RC

B. TESTS ON AN ACTUAL APPLICATION GRAPH

The RC techniques were next practiced on an actual application graph. The graph chosen was the
‘Active Sonobuoy’ graph provided by AT&T for the ECOS simmiator of the EMSP system [Ref. 13), and
modified to fit the described system model. As with the test graph, the node setup and breakdown latencies
are zero, the node instruction size is zero, and the scheduler Iatency is zero. The produce amount, consume
amount, write amount, read amount, and threshold amount are the same for a given queue, with the capacity
cight times this quantity. The number of memory modules is equal to the number of processors, with all nodes
mapped to a processor assigned 0 the same memory and queues assigned t0 the memory of the sink node.
The simulator is set to determine the maximum throughput of the system.

Figure 4.10 shows the active sonobuoy graph. The node execution times and quene quantities are given
at the bottom for each ‘level’ of the graph, as all nodes and quenes on each level are the same. The exception

39

is for the final ‘level’ of nodes where the execution time is below each node and the quene quantity for all
quenes into that node, as the quantities diffes. Note this graph provides for a high degree of parallel execution.

. .
Y lk
: ‘\‘A’ll// A \\\\‘A l
g ()

O RO

¥ ; OO\
; n.::.\ \ / o \
RO :
,A'A A\\\ ’ II'A

ﬁ/ XN Y '::“ H;//’
I »:4/

Queues Nodes Quenes Nodes Queues Nodes Queues Nodes
512 13200 1024 12600 512 24600 512 9000

Figure 4.10. Active Sonobuoy Graph

Only one mapping on each of three different processor arrangements (four, cight, and thirteen) was
tested. Yet in that small test sample, the results for this graph generally mirror the results for the test graph.
With low communications costs, FCFS yields good results and there is no gain with RC. However, as

communication costs increase, RC can yield increasing improvements. Once again, there is no concurrence
s to which variation of RC will consistently yieid the best resuits. For exact resuits, see [Ref. 11].

C. ADDITIONAL RESULTS

In both of the graphs tested, another result viewed is the coefficient of variation. This is a measure of
the regularity of completion, or response time of graph instances. The lower this number, the closer the
response times of all the measured graph instances t0 the average response time. With both graphs, the
coefficient of variation for RC is consistently less than FCFS. With some mappings, it is possible to reduce
the coefficient of variation to zevo. However, it must be noted that aithough RC is an improvement over
FCFS, the results for FCFS were low to begin with.

41

V. CONCLUSION

This thesis provides 2 model for a Large Grain Data Flow (LGDF) computer system. This system
utilizes two part processors, where one part handies communications and the other handles execution. The
applications running on this computer system are modeled as data flow graphs coasisting of nodes and
quenes.

A scheduling technique known as the Revolving Cylinder (RC) is described, with four variations. In
tests versus simple First-Come-First-Serve (FCFS) scheduling, it is shown that RC can lead to increased
throughput, especially as communication costs increase. However, it is seen that selecting the appropriate
mapping is not a simple task, and a good mapping for one communication cost is not necessarily a good
mapping for another communication cost. It is also shown that none of the variations of RC are consistently
better than any other variation, and are dependent on the mapping.

A. EXPANDED TESTING

In this research, the purpose was to generate baseline results which allow for further expansion. Many
additional tests must be condncted to fully analyze the effectiveness of the RC technique. Several important
issues must be studied.

For nodes, in all tests, the instruction size is zero. Therefore, there is no memory contention associated
with retrieval of the instructions from memory. The input and output nodes have no bearing on processing
with the execution time set to zero.

For queuves, in all cases the produce/consume, read/write, and threshold amounts were always constant.
Varying these quantities could have a major impact on graph execution.

All latencies, node setup and breakdown, and scheduler latency were zero. This reduces the
communication overhead.

All tests were made with the oumber of memory modules equal to the number of arithmetic processors.
Tests need t0 be made with varying onmbers of memory modules to fully analyze the effects of memory
contention.

All tests were based on maximom graph throughput. Tests need to be completed with various graph
activation rates. '

42

B. FUTURE RESEARCH

The primary area for future research work regarding RC is in the area of mapping. The results of this
paper show thet a mapping for RC can be found which improves pesformance over FCFS. However, there is
no method for easily obtaining this mapping due to the many variables involved. Accurate characterization
of the cylinder mapping is necessary to develop a metric for a good mapping. This would imply establishing
a comrelation betweea s given mapping and its ran-time performance.

43

10.

11.

13.

LIST OF REFERENCES

Brobet, S. A., “Organization of an Instruction Scheduling snd Token Storage Unit in a
Tagged Token Data Flow Machine.” in Proceedings of the 1987 Insernational Conference on
Parallel Processing, vol. 3, Angust 1987.

Lee, E A, and Messerschmitt, D. G.. “Static Scheduling of Synchronous Datafiow
Programs for Digital Signal Processing,” in /[EEE Transactions on Computing, vol. C-36, no.
1, January 1987.

Karp, R. M., and Miller, R. E., “Properties of a Model for Parallel Computations:

Determinacy, Termination, Queueing.” in Journal of Applied Mathematics, vol. 14, no. 6,
November 1966.

Lee, E A, “Consistency in Dataflow Graphs,” in /EEE Transactions on Parallel and
Distributed Systems, vol. 2, no. 2, April 1991,

Gurd, J. R., Kirkhame, C. C., and Watson, L, “The Manchester Prototype Datafiow
Computer,” in Communications of the ACM, January 1985.

Lee. E. A., and Bier, J. C., “Architectures for Statically Scheduled Dataflow,” in Journal of
Parallel and Distributed Computing, vol. 10, December 1990.

King, C. T., Chou, W. H., and Ni, L. M., “Pipelined Data - Parallel Algorithms: Part I -
Concept and Modeling,” in /EEE Transactions on Parallel and Distributed Systems, October
1990.

Shukia, S. B., Little, B. S., and Zaky, A., “A Compile-time Technique for Controlling Real-
time Execution of Task-level Data-flow Graphs,” presented at the 1992 Intemnational
Conference on Parallel Processing.

Rau, B. R., Glseser, C. D., and Picard, R. L., “Efficient Code Generation for Horizontal
Architectures: Compiler Technique and Architectural Support.™ in Proceedings of the 9th
International Symposium on Computer Architecture, 1982.

Rice, M. L., “The Navy’s New Standard Digital Signal Processor: The AN/UYS-2,” paper
presented at the Association of Scientists and Engineers 27th Annnal Technical Sympogium,
23 May 1990.

Naval Postgraduate School Technical Report NPS-EC-93-015, Revolving Cylinder Analysis:
A Technique for Restructuring of Large Grain Data Flow Graphs Representing Throughput-
Critical Applications, by D. M. Cross, S. B. Shukla, and A. Zaky, September 1993,

Naval Postgraduate School Technical Report NPS-EC-93-016, A Tool for the Analysis of the
Parallel Execution of Throughput-Critical LGDF Programs: A User Manual, by D. M.
Cross, S. B. Shukia, and A. Zaky, September 1993.

AT&T Technologies, Report IN 48280, ECOS Workstation Tutorial, AT&T Bell
Laboratories, 30 March 1991.

16.

17.

Akin, C., A Periodic Input Processing Data Flow Simulator, Master’s Thesis, Naval
Postgraduate School, Monterey, California, March 1993.

Bell, H A., A Compile-Time Approach for Chaining and Execution Control in the AN/UYS-2
Parallel Signal Processor, Master's Thesis, Naval Postgraduate School, Monserey,
Californis, June 1992.

Little, B. S., A Technique for Predictable Real-Time Execution in the AN/UYS-2 Parallel
Signal Processing Architecture, Master's Thesis, Naval Posigraduate School, Mooterey,
California, December 1991.

Swank, D., Large Grain Data-Flow Graph Restructuring for EMSP Signal Processing

Benchmarks on the ECOS Workstation System, Master’s Thesis, Naval Postgraduate School.
Monterey, California, June 1993.

45

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Chairman, Code CS

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

Prof. Shridhar B. Shukla, Code EC/Sh

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Prof. Amr Zaky, Code CS/Za
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

Mr. David Kaplan

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5000

Mr. Richard Stevens

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5000

10.

11.

Commander, Naval Sea Systems Command
PMS 428

Naval Sea Systems Command Headquarters
Washington, DC 20362-5101

American Telephone and Telegraph Bell Laboratories
Attn: Mr. Jerome Uhrig, WH 46243

67 Whippany Road

P.O. Box 903

Whippany, NJ 07981-0903

CPT David M. Cross, USA

444 Arbor Road
Cinnaminson, NJ 08077

47

